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Abstract: Background: The hippocampus, entorhinal cortex, and fusiform gyrus are brain areas that 
deteriorate during early-stage Alzheimer’s disease (AD). The ApoE4 allele has been identified as a 
risk factor for AD development, is linked to an increase in the aggregation of amyloid β (Aβ) plaques 
in the brain, and is responsible for atrophy of the hippocampal area. However, to our knowledge, the 
rate of deterioration over time in individuals with AD, with or without the ApoE4 allele, has not been 
investigated.  
Methods: In this study, we, for the first time, analyze atrophy in these brain structures in AD patients 
with and without the ApoE4 using the Alzheimer’s Disease Neuroimaging Initiative (ADNI) dataset.  
Results: It was found that the rate of decrease in the volume of these brain areas over 12 months was 
related to the presence of ApoE4. Further, we found that neural atrophy was not different for female 
and male patients, unlike prior studies, suggesting that the presence of ApoE4 is not linked to the gen-
der difference in AD.  
Conclusion: Our results confirm and extend previous findings, showing that the ApoE4 allele gradual-
ly impacts brain regions impacted by AD.  

 
 

Keywords: Alzheimer’s disease, hippocampus, APOE gene, entorhinal cortex, fusiform gyrus, disease progression, gender 
differences. 

1. INTRODUCTION 

Alzheimer’s disease (AD) is the most common form of 
dementia and is marked by neurodegeneration, formation of 
extracellular amyloid β (Aβ) plaque and intracellular neuro-
fibrillary tangles containing aggregated tau [1-5]. The medial 
temporal lobe is involved with the formation of episodic 
memory and spatial cognition and includes numerous sub-
structures that are responsible for various cognitive and emo-
tional functions [6-11]. The medial temporal lobe includes 
the hippocampus and its adjacent cortical areas, such as the 
parahippocampal cortex, the entorhinal cortex, the fusiform 
gyrus, and the perirhinal cortex, among other regions [12,  
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13]. These brain structures play a role in different memory 
processes [14-16], and are also impacted by AD [16-19]. 
Importantly, as we show below, these brain structure deterio-
rates at different temporal rates in AD. 

The hippocampus is a brain structure deep in the tem-
poral lobe. It plays a crucial role in decision-making, associ-
ative learning, memory processing and consolidation [20-
23]. In addition, the hippocampus is also involved in learn-
ing and retrieving past experiences [21] and provides the 
neural basis for cognitive mapping [24, 25]. The hippocam-
pus is one of the regions in the brain which undergoes atro-
phy during early AD [21, 26, 27]. Vijayakumar and 
Vijayakumar [28] found that the hippocampal volume and 
ratio were reduced by 25% in patients with AD. 

Along with the hippocampus, the entorhinal cortex also 
undergoes atrophy during early AD [29-33]. In AD, atrophy 
progresses gradually, starting from the entorhinal cortex and 
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the hippocampus [29]. It then encompasses the lateral tem-
poral, the medial parietal, and the frontal region and finally 
affects all the areas of the cerebral cortex [34-36]. 

The entorhinal cortex is located in the medial temporal 
lobe and is considered a portal for information entering the 
hippocampus [37]. Importantly, the entorhinal cortex pro-
vides most of the cortical input to the hippocampus [38]. The 
transentorhinal region has been recognized as the key region 
that undergoes atrophy during the early stages of AD [39]. It 
has been argued that, subsequently, the damage spreads to 
the entorhinal cortex, the hippocampus, and various limbic 
structures [30]. 

The fusiform gyrus is located on the basal surface of the 
occipital and temporal lobes. The fusiform gyrus has been 
linked to cognitive deficits for individuals with AD and mild 
cognitive impairment and is a promising area of investiga-
tion for the early detection and progression of AD [40]. 
However, in the context of AD, relative to other areas of the 
brain (e.g., the hippocampus, temporal lobe, and the pre-
frontal cortex), the fusiform gyrus remains understudied [40, 
41], especially regarding the expression of genes in the fusi-
form gyrus that is linked to the progression of AD (e.g., 
Apolipoprotein E). 

Apolipoprotein E (ApoE) is a 299 amino acid protein 
with roles within specific tissues, including lipid metabo-
lism, primary lipid transporter (in cells in the central nervous 
system to achieve optimal lipid homeostasis), and is found in 
large numbers in the brain [42, 43]. ApoE also plays a cru-
cial role in neuronal maintenance and repair, with each pol-
ymorphic form having a distinct function [44]. The three 
primary polymorphic forms (ApoE2, ApoE3, and ApoE4) 
[43] encode different protein isomers and have different ef-
fect on lipid and neuronal homeostasis [42]. Among the var-
ious isomeric forms, ApoE4 is associated with an increase in 
the aggregation of Aβ [45-48], followed by ApoE3 and Ap-
oE2. Several studies have found that the ApoE4 allele is a 
genetic risk for the development of AD [49, 50], among oth-
er genes [51]. Specifically, the ApoE4 allele has been linked 
to an increase in amyloid deposition and neurofibrillary tan-
gles in the brain [52, 53] as well as a loss of choline acetyl-
transferase in the frontal and temporal cortex [30, 54-56]. 
The loss of choline acetyltransferase was reported to vary 
among male and female patients with AD [57, 58]. Notably, 
Wisniewski and Drummond [45] reported that the interaction 
between ApoE and Aβ modulates the aggregation and clear-
ance of Aβ and thus has an impact on the development of 
amyloid plaques and neurofibrillary tangles. In addition, it 
was also shown that ApoE4 promoted the oligomerization 
and fibrillization of Aβ, which is related to the early onset of 
AD [45, 59]. Importantly, a recent study reported that ApoE4 
is associated with a rapid cognitive decline and is the second 
strongest risk factor for the development of AD following 
age [60]. 

2. THE CURRENT STUDY 

The current study aims to use publicly available data to, 
for the first time, analyse the rate of atrophy in the hippo-
campus and the entorhinal cortex in AD patients with and 
without the ApoE4 allele over a period of 6 and 12 months 
as well as to analyse the effect of the ApoE4 allele on the 

connectivity patterns between the entorhinal cortex and hip-
pocampus. Specifically, in this article, we will investigate if 
the presence of the ApoE4 allele affects the rate of decrease 
in the volume of the entorhinal cortex and the hippocampus. 
The ApoE4 allele appears to contribute to atrophy in various 
medial temporal lobe regions. In addition, we will also in-
vestigate gender differences in neural atrophy in AD. The 
investigation of gender differences in AD is important as it is 
related to response to cholinesterase inhibitor treatment, as 
found in some clinical trials [57, 58, 61-64]. 

3. MATERIALS AND METHODS 

Data used in this study were obtained from the Alz-
heimer’s Disease Neuroimaging Initiative (ADNI) database 
(adni.loni.usc.edu), as in prior studies [65-70]. The ADNI 
was launched in 2003 as a public-private partnership led by 
Principal Investigator Michael W. Weiner, MD. The primary 
goal of ADNI has been to test whether serial magnetic reso-
nance imaging (MRI), positron emission tomography (PET), 
other biological markers, and clinical and neuropsychologi-
cal assessment can be combined to measure the progression 
of mild cognitive impairment (MCI) and early Alzheimer’s 
disease (AD). 

The decrease in the hippocampus and entorhinal cortex 
volume in 6 and 12 months compared to the baseline was 
calculated for both male and female patients with and with-
out the ApoE4 allele. A t-test was conducted to determine 
statistical significance. The level of significance was set at p 
< 0.05.  

4. RESULTS 

We present our results on the hippocampus, the entorhi-
nal cortex, and the fusiform gyrus, respectively. 

4.1. Hippocampus 

Mixed linear models were conducted to identify if hippo-
campal volume decreased with the presence of ApoE4 alleles 
across time (i.e., the period of 0, 6, and 12 months) while 
controlling for age and gender (and their interaction) and the 
interaction between time and ApoE4, and with a random 
intercept for participant ID.  

The hypothesised model showed significant improvement 
compared to the empty model. Table 1 shows that female 
participants had significantly smaller hippocampal volume 
than male participants, and hippocampal volume decreased 
as age increased. There was also a significant effect of time, 
whereby hippocampal volume decreased significantly from 
baseline through to 12 months. Notably, there was a signifi-
cant interaction between APoE4 and time. This suggests that 
the decrease in hippocampal volume from baseline to 12 
months depended on the presence of ApoE4 alleles. Specifi-
cally, those with two ApoE4 alleles showed significantly 
more reduced hippocampal volume than those with no Ap-
oE4 alleles. However, there was no age by gender interac-
tion, this suggests that the reduced hippocampal volume for 
females compared to males was not dependent on their age. 
The significant random intercept indicates that participants 
differed significantly at their baseline measurements indicat-
ing significant variation in hippocampal volume between 
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Table 1. Mixed linear model predicting Hippocampal volume. 

Variable- Estimate SE df t p 
95% CI 

Lower Upper 

Intercept 11623.64 368.21 1642.99 31.57 <.001 10901.43 12345.85 

Female -194.03 538.21 1639.05 -0.36 .719 -1249.68 861.62 

APOE4 (0 Alleles) 1015.6 90.00 1679.05 11.29 <.001 839.08 1192.12 

APOE4 (1 Allele) 536.16 92.47 1679.69 5.80 <.001 354.80 717.52 

APOE4 (2 Alleles) - - - - - - - 

Age -73.08 4.91 1641.06 -14.89 <.001 -82.71 -63.45 

Time -18.07 1.81 2931.25 -9.98 <.001 -21.62 -14.52 

Gender * Age -3.82 7.30 1639.33 -0.52 .601 -18.13 10.49 

APOE4 (1 Allele) ×Time 8.03 1.98 2931.82 4.06 <.001 4.15 11.91 

APOE4 (1 Allele) × Time 1.32 2.04 2931.81 0.65 .517 -2.68 5.33 

APOE4 (2 Alleles)× Time - - - - - - - 

Random effects - - - Wald Z - - - 

Residual 28717.97 751.77 - 38.20 <.001 27281.68 30229.87 

Intercept | ID 1071029.10 37851.95  - 28.30 <.001 999351.82 1147847.40 

 

participants. However, there was consistency in the meas-
urement of hippocampal volume (ICC = .97).  

4.2. Entorhinal Cortex 

Mixed linear models were conducted to identify if Ento-
rhinal cortex volume decreased with the presence of ApoE4 
alleles across time (i.e., the period of 0, 6, and 12 months) 
while controlling for age and gender (and their interaction) 
and the interaction between time and ApoE4, and with a ran-
dom intercept for participant ID. The hypothesised model 
showed significant improvement compared to the empty 
model. See Table 2 for results. 

There was a significant time effect, whereby the volume 
of the entorhinal cortex decreased significantly from baseline 
to 12 months. There was also a significant effect of APoE4 
on Entorhinal cortex volume. Participants who presented 
with zero or one APOE4 alleles had significantly larger En-
torhinal cortex volume than those with two APOE4 alleles. 
Further, age was negatively associated with Entorhinal cor-
tex volume. There was no significant difference in the Ento-
rhinal cortex volume between females and males and no sig-
nificant APoE4 × Time interaction. This suggests that a de-
crease in Entorhinal cortex volume was due to the presence 
of APoE4 but was not dependent on time. There was also no 
age by gender interaction, suggesting the effect of age on 
Entorhinal cortex volume was not dependent on gender. Fur-
ther, the significant random intercept indicates that partici-
pants differed significantly at their baseline measurements 
indicating significant variation in Entorhinal cortex volume 
between participants. However, there was consistency in the 

measurement of Entorhinal cortex volume across participants 
(ICC = .87). 
4.3. Fusiform Gyrus 

Mixed linear models were conducted to identify if Fusi-
form Gyrus volume decreased with the presence of ApoE4 
alleles across time (i.e., the period of 0, 6, and 12 months) 
while controlling for age and gender (and their interaction) 
and the interaction between time and ApoE4, and with a ran-
dom intercept for participant ID. The hypothesised model 
showed significant improvement compared to the empty 
model.  

Table 3 shows a significant time effect, whereby the vol-
ume of the fusiform gyrus decreased significantly from base-
line to 12 months. Entorhinal cortex volume significantly 
decreased, and there was a significant effect of APoE4 on 
the volume of the entorhinal cortex. Participants who pre-
sented with zero or one APOE4 alleles had significantly 
larger Fusiform Gyrus volume compared to those with 2 
APOE4 alleles. However, there was also a significant APoE4 
× Time interaction. This suggests that a decrease in Fusiform 
Gyrus volume across time was dependent on the presence of 
APoE4 alleles. There was no significant difference in the 
Fusiform Gyrus volume between females and males, and 
there was no significant age by gender interaction, suggest-
ing the effect of age on Fusiform Gyrus volume was not de-
pendent on gender. Further, the significant random intercept 
indicates that participants differed significantly at their base-
line measurements indicating significant variation in Fusi-
form Gyrus volume between participants. However, there 
was consistency in the measurement of Fusiform Gyrus vol-
ume across participants (ICC = .0.94). 



946    Current Alzheimer Research, 2022, Vol. 19, No. 14  Abo Hamza et al. 

Table 2. Mixed linear model predicting Entorhinal cortex volume. 

Variable Estimate SE df t p 
95% CI 

Lower Upper 

Fixed effects - - - - - - - 

Intercept 5508.02 254.46 1607.80 21.65 <.001 5008.91 6007.14 

Female -517.74 369.12 1590.27 -1.40 .161 -1241.76 206.28 

APOE4 (0 Alleles) 543.40 63.08 1779.95 8.62 <.001 419.68 667.11 

APOE4 (1 Allele) 241.24 64.85 1783.87 3.72 <.001 114.05 368.44 

APOE4 (2 Alleles) - - - - - - - 

Age -30.51 3.40 1600.06 -8.97 <.001 -37.17 -23.84 

Time -10.07 2.91 2854.31 -3.46 .001 -15.78 -4.36 

Gender * Age 1.75 5.01 1592.49 0.35 .727 -8.08 11.59 

APOE4 (0 Alleles) ×Time 3.83 3.18 2857.95 1.20 .229 -2.41 10.07 

APOE4 (1 Allele) × Time 1.61 3.29 2859.06 0.49 .625 -4.84 8.05 

APOE4 (2 Alleles) × Time - - - - - - - 

Random effects - - - Wald Z - - - 

Residual 71781.81 1919.81 - 37.39 <.001 68116.00 75644.93 

Intercept | ID 465730.30 17631.69 - 26.41 <.001 432424.00 501602.20 

 
Table 3. Mixed linear model predicting Fusiform Gyrus volume. 

Variable Estimate SE df t p 
95% CI 

Lower Upper 

Fixed effects - - - - - - - 

Intercept 26275.92 888.81 1628.32 29.56 <.001 24532.58 28019.25 

Female -2336.28 1295.65 1622.70 -1.80 .072 -4877.61 205.05 

APOE4 (0 Alleles) 873.61 216.53 1658.36 4.04 <.001 448.91 1298.31 

APOE4 (1 Allele) 143.10 222.41 1659.12 0.64 .520 -293.12 579.33 

APOE4 (2 Alleles) - - - - - - - 

Age -118.17 11.89 1627.04 -9.94 <.001 -141.49 -94.86 

Time -30.24 2.19 4899.31 -13.79 <.001 -34.54 -25.94 

Gender × Age 5.35 17.59 1623.61 0.30 .761 -29.15 39.84 

APOE4 (0 Alleles) × Time - - - - - - - 

APOE4 (1 Allele) × Time 21.74 2.29 4898.34 9.48 <.001 17.24 26.24 

APOE4 (2 Alleles) × Time 6.48 2.37 4897.10 2.73 .006 1.83 11.12 

Random effects - - - Wald Z - - - 

Residual 390369.72 7947.84 - 49.12 <.001 375,098.95 406262.17 

Intercept | ID 6,065,886.94 217,875.21 - 27.84 <.001 5,653,543.76 6,508,304.51 
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5. DISCUSSION 

AD is a neurodegenerative disorder mainly characterized 
by deterioration in cognitive function and loss of memory 
[43, 71, 72]. AD is associated with an aggregation of amy-
loid β (Aβ) into extracellular plaques in the brain and the 
presence of neurofibrillary tangles and neuropil threads 
formed by tau [45, 73]. The later stages of AD include se-
vere memory loss, language impairment, difficulty speaking 
and disorientation [43]. In the current study, we have exam-
ined the rate of atrophy in the hippocampus, entorhinal cor-
tex, and fusiform gyrus within a period of 0 to 12 months in 
the presence and absence of the ApoE4 allele.  

The protein ApoE plays a role in controlling cholesterol 
levels in peripheral circulation. It also plays a significant role 
in neural processes, regulating the exchange of metabolites 
between the glial cells and neurons. This process is essential 
for keeping brain tissues healthy [74, 75]. ApoE4, a poly-
morphic form of the protein ApoE, increases the aggregation 
of Aβ and is a risk factor for AD development. Many studies 
have shown that the presence of the ApoE4 allele results in 
atrophy in various brain areas [76-78].  

One of the main findings of the present study is that the 
rate of decrease in the hippocampal and Fusiform Gyrus vol-
ume from 0 to 12 months was dependent on the presence of 
one or more ApoE4 alleles. Specifically, when two ApoE4 
alleles were present, there was a significant decrease in the 
volume of the hippocampus and Fusiform Gyrus from base-
line measurements and the 12-month follow-up. These find-
ings indicate that the reduction in volume in the hippocam-
pus and the Entorhinal cortex across time depended on the 
presence of ApoE4 alleles within the ADNI sample. Howev-
er, this interaction effect was not found in the Entorhinal 
cortex, but ApoE4 alleles were a significant bio-marker for a 
reduction in volume in the Entorhinal cortex (independent of 
time). 

Our results showed that there was a reduction in entorhi-
nal cortex volume over 12 months, and this decrease is asso-
ciated with APOE4. However, the decrease over time was 
not dependent on the presence of APOE4, as observed in the 
hippocampus and fusiform gyrus. This may support previous 
literature suggesting that the entorhinal cortex is one of the 
first brain structures to undergo atrophy, which is in agree-
ment with prior results [79-83]. Because it is one of the ear-
lier areas to be affected, the deterioration might begin before 
the presence of APOE4. Therefore, this suggests measuring 
the volume of the entorhinal cortex as a diagnostic tool for 
detecting AD [30]. In addition, Juottonen and colleagues 
[30] found that a decrease in the volume of the entorhinal 
cortex was more significant in the left than in the right hemi-
sphere in patients with AD carrying the ApoE4 allele com-
pared to patients without the allele [84]. Furthermore, 
Lehtovirta et al. [85] found that a decrease in hippocampal 
volume was greater in AD patients with the ApoE4 allele. 

Moreover, the lack of statistical significance in the 
change of hippocampal, fusiform gyrus, and entorhinal cor-
tex volume between female and male patients for the 12-
month period is intriguing as this has not been reported in 
prior studies. Our findings are not in line with prior findings 
showing that the presence of APOE4 increases the risk of 

developing AD in females more than in males [86]. Some 
prior studies have shown that male and female with AD 
show differences in cholinergic system and activity [57]. 
Further research is required to explain this result and wheth-
er it holds on for a longer duration. It is possible that we did 
not find a significant decrease in the hippocampal volume as 
12 months is a short period. However, it is unclear why male 
patients showed a decrease in hippocampal volume during 
this time compared to female patients. 

There are multiple studies on the impact of gender on 
Alzheimer’s disease. Most studies report that AD is more 
common in female than in male patients [87-96]. Some stud-
ies argue that gender differences in the prevalence of AD 
could be related to differences in cognitive reserve [97], es-
trogen levels [98] or stress [23, 99]. Other studies found that 
male and female patients with AD may respond differently 
to cholinesterase inhibitor medications [57, 58]. In other 
words, Giacobini and colleagues [58] suggested that cholin-
esterase inhibitor medications may be more effective at man-
aging dementia symptoms in female than in male AD pa-
tients. For example, one study found that females progress 
faster to AD than males [100]. Our findings are different 
from Juottonen et al. [30] and Sampedro et al. [101]. For 
example, [30] found that the effect of the APoE allele on the 
entorhinal cortex volume was prominent in female patients 
with AD. It is unclear why the rate of atrophy differs in our 
male and female groups. However, various studies have 
evaluated estrogen's effect on cognitive decline. Further, in 
AD, the protective effect of estrogen against cognitive de-
cline has been suggested, and it has been theorised that es-
trogen-based hormone therapy close to menopause might 
reduce the risk of AD [73, 102]. In addition, ApoE is im-
portant in transporting lipids across plasma membranes and 
is also involved in the exchange of metabolites between glial 
cells and neurons, which is essential for ensuring healthy 
brain tissue [74]. Reilly et al. [103] found that gender affects 
the action of ApoE on the allocation of plasma lipids which 
may affect the efficiency of ApoE4 in maintaining healthy 
brain tissue. Importantly, our findings align with those of a 
recent study [104]. In this study, female patients showed 
better memory performance and less hippocampal damage 
than male patients with AD [105-107]. One limitation of the 
[104] study was that they did not look at temporal 
differences in neural atrophy or investigate changes in other 
brain areas, such as the entorhinal cortex. 

It is important to note that some studies, however, did not 
find any gender differences in Alzheimer’s disease, which is 
in agreement with our findings. For example, Edland and 
colleagues did not find any sex differences in a sample of 
AD patients [108]. Edland and colleagues argue that gender 
differences in the prevalence of AD could be related to 
geographreical location and age group of the patients. The 
patients in the Edland and colleagues study are from the 
USA, which is similar to ADNI data we used here. 

ApoE4 has been recognized as a risk factor in AD and is 
known to affect the age of onset of AD and impair the func-
tioning of other brain regions, including the entorhinal cor-
tex, fusiform gyrus, and hippocampus. However, the mecha-
nism causing this damage is unclear [30]. Entorhinal cortex 
and hippocampus atrophy may be due to failed neuronal re-
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generation. This process is important for structures in the 
medial temporal lobe as it is the area where the integral pro-
cess of synaptogenesis predominantly occurs [30, 109]. The 
inability to compensate for the harm caused by the ApoE4 
allele may lead to neuronal degeneration and, thus, atrophy 
in medial temporal lobe structures, including the entorhinal 
cortex and the hippocampus. Another potential related 
mechanism underlying AD is synaptic pruning, which is the 
process of eliminating synapses [110]. Several studies sug-
gest that cognitive decline and memory impairment in aging 
and AD is related to synaptic pruning [111-113]. 

In this study, we also analysed the effect of the ApoE4 
allele on the connectivity between the hippocampus, fusi-
form gyrus, and entorhinal cortex. Studies have revealed that 
the entorhinal cortex contributes to hippocampal formation 
[29]. Damage to this structure, caused by the presence of the 
ApoE4 allele, may help develop AD. While the hippocampus 
is responsible for major AD symptoms, early AD symptoms 
result from damage to the entorhinal cortex [114]. In indi-
viduals carrying the ApoE4 allele, neurofibrillary tangles 
have been detected in their 30s, with greater frequency rep-
resenting the effect of this allele early in life [114]. In addi-
tion, the presence of ApoE4 has been linked with the degen-
eration of pyramidal neurons in the entorhinal cortex in early 
AD [114-116]. Nuriel et al. [75] showed that the presence of 
the ApoE4 allele is linked with hypermetabolism in the ento-
rhinal cortex. Lastly, we have identified that the presence of 
APOE4 alleles contributes to the significant deterioration of 
the volume of the fusiform gyrus. These findings have sup-
ported recent evidence suggesting the fusiform gyrus is im-
plicated in the early onset and progression towards AD. We 
have extended these findings by identifying that the expres-
sion of APOE4 alleles contributes to the reduction in the 
volume of the fusiform gyrus and is an essential biomarker 
for the progression of AD. 

Moreover, the hippocampal and parahippocampal corti-
ces consist of various cell types. Place cells have a unique 
spatial firing arrangement [38]. However, these neural activi-
ties were not reported within the hippocampus but in the 
entorhinal cortex. The entorhinal cortex provides most of the 
cortical input to the hippocampus [38]. The medial entorhi-
nal cortex has the following cell types: grid, border and head 
direction cells [117, 118]. The interactions between place 
cells in the hippocampus and other cell groups in the ento-
rhinal cortex have been studied [38]. The grid cells are re-
sponsible for controlling spatial navigation [119]. Border 
cells provide direct input to the hippocampus among these 
hippocampus-projecting entorhinal neurons. Border cells are 
neurons that fire signals in response to the environmental 
boundary, producing a signal in local hippocampal cells [38]. 
However, to our knowledge, the effect of the ApoE4 allele 
on border cells has not yet been investigated. Research con-
ducted on grid cells has found that their function, which in-
cludes spatial navigation, was prominently impaired in 
young people with the ApoE4 allele. In addition, it was also 
found that grid cells are responsible for maintaining place 
cells [119]. In other words, the decrease in the function of 
grid cells leading to poor maintenance in place cells could be 
responsible for a decreased connectivity between the ento-
rhinal cortex and the hippocampus due to the ApoE4 allele. 

In addition, a damage to grid cells is responsible for naviga-
tion impairment observed in AD [119].  

Building on prior work [22, 120-123], future work should 
investigate whether ApoE4 affects the connection between 
the place cell in the hippocampus and cell types such as grid 
cells, border cells and head direction cells in the entorhinal 
cortex. Importantly, computational modelling work should 
understand how the interaction between the hippocampus 
and entorhinal cortex (including cells in these brain regions) 
relates to memory performance and the development of dif-
ferent symptoms in AD. 

6. LIMITATIONS 

This study was not without limitations. For instance, the 
ADNI data does not include “age of AD onset” but only the 
age at which participants completed their baseline assess-
ment. This contributed to several limitations that prevented 
further exploration of our findings. For example, without age 
of onset data, we could not control for how long participants 
had the disease. As such, our interpretation of the rate of 
atrophy in the hippocampus and the entorhinal cortex due to 
ApoE4 allele should be interpreted with some caution. For 
instance, we found that the participants differed significantly 
at their baseline measurements (i.e., random intercept) for 
the volume of the fusiform gyrus, entorhinal cortex, and hip-
pocampus. The differences between participants at baseline 
could be explained by their age of onset. That is, we do not 
know how long participants have had symptoms of AD or 
how long they have been diagnosed with AD. Therefore, we 
are unable to estimate or control for the rate of atrophy that 
might have already occurred before baseline measurements. 
We strongly advise future ADNI projects and studies to con-
sider the impact of the age of AD onset. This will give us a 
deeper understanding of the disease progression and help us 
determine the stage of atrophy in the hippocampus, entorhi-
nal cortex, and fusiform gyrus in AD patients with and with-
out the ApoE4 allele.  

CONCLUSION  

This study provided information on the rate of atrophy in 
the hippocampus, fusiform gyrus, and the entorhinal cortex 
in AD patients with and without the ApoE4 allele. In the 
near future, data analysis could be improved by analysing 
data for a longer time frame (for example, up to 36-48 
months) to gain more information on the rate of atrophy of 
different brain areas, including the cortex. In this study, indi-
viduals having one and two ApoE4 alleles were included. 
Strictly selecting individuals with only one or two alleles can 
lead to understanding the effect of alleles in greater detail. 
Furthermore, analysing atrophy in subregions within the hip-
pocampal, fusiform gyrus, and entorhinal cortex would pro-
vide greater insight into understanding the mechanism of the 
spread of AD.  
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